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For a two-dimensional potential flow, Foppl obtained the equilibrium positions for a 
symmetric vortex pair behind a circular cylinder in a uniform oncoming flow. In this 
article it is shown that such an equilibrium is in general possible for a vortex in a 
stagnation flow (e.g. in a corner). Furthermore it is found that a vortex near such an 
equilibrium position will rotate with a definite frequency around this equilibrium. 
Expressions are derived for the frequencies associated with the closed orbits of the 
vortices in the case of the equilibrium of a vortex in a stagnation flow and for the 
equilibrium of the symmetric vortex pair behind a circular cylinder in oncoming flow. 
For the large-amplitude case the vortex trajectories are calculated by using a fifth-order 
RungeKutta integration method. The analysis is then extended to the case of a simple 
wing-body combination in a cross-flow such as arises for a slender aircraft at an angle 
of attack with vortices generated by strakes or at the front part of the body. At the 
wing-body junctions the motions of the vortices may be periodic, quasi-periodic or 
the vortices may be swept away, depending on the initial conditions. 

1. Introduction 
In the design of modern aircraft, vortices are used to improve manoeuvrability at 

high angles of attack. The vortices may be generated at the forebody or at the 
intersection of wing and body by so-called strakes (figure 1). Despite numerous 
experiments and computational efforts the behaviour of such vortices in the 
neighbourhood of an aircraft is not fully understood. Especially, the occurrence of 
oscillating forces and vortex breakdown pose problems. The periodic and quasi- 
periodic flows discussed in this paper may be relevant to an explanation of such 
phenomena. 

In order to obtain some insight into vortex flows around wing-body configurations 
it appeared natural to start with a study of simple two-dimensional incompressible 
potential flows with concentrated vortices in the neighbourhood of wing-body-like 
cross-sections which also arise in the usual slender-body approximation. 

As described by e.g. Lamb (1932) and Saffman (1992), in 1913 Foppl investigated the 
case of a circular cylinder in a uniform oncoming flow, followed by a vortex pair 
‘symmetrically disposed with respect to the line of advance of the centre’. Using the 
method of images it is shown that the vortices can maintain their positions relative to 
the cylinder, provided they lie on a certain (symmetric) curve emanating from the rear 
stagnation point and that the strengths of the vortices (equal and opposite) correspond 
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FIGURE 1. Vortex flow near a wing-body combination. 

to a given position on this curve. The arrangement is known to be unstable for non- 
symmetrical disturbances and the vortices are then convected away from the cylinder. 
Apparently the equilibrium of the vortices is precarious. In the equilibrium situation 
with the vortices approaching the stagnation point on the cylinder, the flow in the near 
field is equivalent to the flow field of a vortex pair (symmetrically disposed) near a 
stagnation point on a flat wall or of a single vortex in a corner flow field. This case is 
discussed in $2, using the method of images. Small symmetric displacements of the 
vortices lead to small circular trajectories around the equilibrium positions with a 
definite frequency. 

In 8 3 a similar analysis is applied to the case of a symmetric vortex pair near a circle. 
Periodic solutions are obtained with the vortices orbiting around Foppl’s equilibrium 
points. The frequencies belonging to the Foppl equilibria are derived. For large but 
symmetric perturbations a fifth-order Runge-Kutta integration method is applied for 
calculating the vortex trajectories. 

In $4 the cross-flow around a wing--body combination at an angle of attack is 
constructed by application of two successive Joukowski transformations. The vortex 
velocities are obtained analytically using a result due to Lin (1941). A vortex pair at the 
top of the body behaves in a way similar to that found in $3 for a circular cylinder. A 
vortex pair situated close to the wing-body junctions, however, gives rise to some new 
features. Equilibrium positions and the corresponding frequencies are calculated 
numerically. In addition to the periodic solutions with perfect left-right symmetry 
there are also solutions which are not symmetric and not periodic. It may also happen 
that one vortex is convected away, while the other one remains trapped and ultimately 
tends to move periodically. 

2. A vortex in a corner flow field 
To analyse the motion of a vortex of constant circulation r near a contour in a free 

flow we first consider the simple case of a vortex in a corner flow field. The velocity 
components u1 and o,, in the x- and y-directions respectively, of vortex 1 (with 
coordinates (xl, y,), figure 2) and the resulting vortex trajectories are well-known (e.g. 
Lamb 1932). The stagnation flow (e.g. Batchelor 1967) can be represented by u = - k x ,  
v = ky, where k is a constant. For k > 0 the flow field is as shown in figure 3, where 
the streamlines are given by rectangular hyperbolae. 



Two-dimensional vortex motion 95 

x 

r r 
FIGURE 2. Trajectories of a vortex in a rectangular corner. 

FIGURE 3. Streamlines of a flow field near a stagnation point. 

For the combined flow field the velocity of vortex 1 is given by 

Solving (1) for u1 = v1 = 0 yields that (x,,yo) is an equilibrium point if 

xo = Y o  and x,,=(&-~. 
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Stability 

To investigate the stability we give the vortex and its mirror vortices a small 
displacement from the equilibrium position, which we denote as 

(3) I x ~ = x ~ + L  Y ~ = Y O + ~ ,  

It1 6 Xn, Id Yo, xo = yo > 0. 
The velocity of vortex 1 near its equilibrium position is obtained by substituting (3) 
into (1). Using (2) and neglecting second-order terms in [ and ‘1 yields 

These equations represent a circular path round the equilibrium position, which can 
easily be seen by eliminating the time from (4) : [d[ + 7 d7 = 0. Integration results in 

t2 + r12 = const. 

Using (4) and (2) one finds that the circular trajectory has a constant angular velocity 
passing through it: 

v 
1 

0) = ~ = 2k, 
4nxg 

which is independent of the radius of the trajectory, and of the distance of the 
equilibrium point to the stagnation point. 

Another aspect of the motions considered here is revealed by taking a closer look at 
the derivatives. From (l) ,  it follows that at the equilibrium point (a, a) we have 

Comparison of (6) with (5)  shows that the ‘vorticity‘ is twice the angular velocity, as 
might have been anticipated from the kinematics of vorticity fields (e.g. Lighthill 1986). 

From (1) we also note that the field (ul,ul) is free of divergence, and one readily 
obtains a streamfunction, known as the Kirchhoff-Routh path function : 

r 
47c (.XI +Yd 

~ , ( x l ,  y l )  = -1n 2x1 ’i ,,2 - kx, yl = const. 

At the equilibrium point we furthermore have, using (2), 

Thus the equilibrium conditions (2) also lead the stagnation flow-field term and the 
contour-induced velocity term to compensate each other in these derivatives. From (7) 
one might conclude that the equilibrium is neutral, in the sense that a small 
displacement from the equilibrium position only causes a velocity perpendicular to the 
displacement vector and no velocity towards or away from the equilibrium. 

3. A symmetric vortex pair near a circle 
We now consider a vortex pair symmetrically disposed above a circular cylinder with 

radius a in an upward flow I.V as shown in figure 4. We use a complex plane with 
5 = (+ iq. The inner vortices are placed to satisfy the boundary condition on the circle. 
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FIGURE 4. Syrnrnctric vortex pair above a circular cylinder in upward flow (w). 

This is a well-known flow field and the vortex velocity is easily obtained using complex 
functions and Helmholtz's theorem. 

With -I-, = = r, it follows from the velocity of vortex 1 that 

For this symmetric case there are equilibrium point likes the equilibrium found in the 
previous section. This equilibrium was already derived by Foppl in 1913 (e.g. Lamb 
1932 or Saffman 1992). 

With Cl = Q = roeso', Fiippl found from (8) that there is equilibrium for (in our 
notation) 

rp - a' r ( r i  - a'),"(ri + a') 
and - = w 0 cos 8, = - 2r: 27c r; 

Beside this equilibrium there is also balance for 

r 
47c 

(ri  - a2) (ri + a2)' 
r,(ri + 4a'r; - a4) ' 

8, = O  and -= w 

(9) 

3.1. Limiting calue of the frequency qf the equilibrium of a symmetric vortex pair 
above a circular cylinder in upward,flow 

As in $2 we determine the vortex velocity in the neighbourhood of the Foppl 
equilibrium position by giving the vortex a small displacement from its equilibrium 
position. The position of the vortex 1, y, = rl  eAii is substituted in  (8) with 

rl  = r,+S, 19, = 8,+cr, S < yo, lcrro( < r,. 
This yields local Cartesian coordinates S and rocr near the equilibrium positions as 
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shown in figure 5. Neglecting quadratic terms in 6 and r, a and eliminating the terms 
for the zero velocity in the equilibrium position and using (9) to simplify, one obtains 

I WU2 
ul = - - ( ( r ~ + 3 a 2 ) 6 s i n 8 , + ( 3 r , 2 - a 2 ) r 0 a ~ ~ ~ ~ , ) ,  

v1 = 3 {(2rt + u2ri + 3a4) Scos 8, - (2~40 + 3a24 - u4) r ,  c1 sin o,}. 

6 
W 

YO 

We now decompose the velocity in the directions 6 and ro a. As indicated in figure 5 we 
have i z u1 cos O, + vl sin o,, 
which, upon substitution of (11) yields 

r, oi M - u1 sin 8, + v1 cos o,, 

This is a system of two first-order linear differential equations with constant coefficients 
which can be solved using the method of eigenvalues. Putting 
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FIGURE 6. Plot of the dimensionless frequency along the equilibrium line. 

and solving system (12) it is found that the system has only imaginary eigenvalues A. 
After simplification (using (9)) one obtains that the purely periodic motion has the 
angular velocity 

The fact that the real part of the eigenvalues equals zero means that we have the same 
kind of neutral equilibrium as in the rectangular corner flow field. There is only a 
periodic motion around the equilibrium position. 

lim w = 4w/a. 

This limit frequency is the same as the frequency of the equilibrium of a vortex in a 
rectangular flow field ( 5 ) .  This is true for k = 2w/a,  and this is indecd the constant for 
the local stagnation flow field we find by applying a local approximation to the 
stagnation flow above the circular cylinder. 

In figure 6 the dimensionless frequency wa/w  is plotted along the Foppl equilibrium 
line. 

3.2. Vortex trajectories 
To illustrate the derived equilibria and the vortex trajectories around them, vortex 
trajectories are calculated and drawn, starting with the vortices in a certain initial 
position. The vortex velocity is calculated using (8) and is integrated by means of a 
fifth-order Runge-Kutta integration method (with a certain time step At) ,  which yields 
the position of the vortices after time step At.  Repeating these calculations a number 
of times, the trajectories in the cross-plane are drawn for a symmetric initial 
disposition. With w = 0 we get the trajectories of figure 7(a). With (for example) 
w = r / 2 a ,  however, closed trajectories are formed, as drawn in figure 7(b). Note that 
because the time step At is constant, the distance between the points is a measure of the 
vortex speed. 

The same mechanism as described in $2 leads to the closed trajectories of figure 7(b). 

We note from (13) that for the limit case 

ro+a 
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FIGURE 7. Trajectory of a symmetric vortex pair: (a) without upwash (w = O), 

(b) with upwash w = r / 2 a .  Initial positions ( f 0.2, 2.0). 

Between the stagnation point at (0,l) and the equilibrium point, the vortex-induced 
vortex velocity dominates. But when the vortex is further away from the stagnation 
point the velocity of the free flow is stronger, and the vortex is convected with the free 
flow. When the two free vortices are close to each other, they will force each other back 
to the contour. The result of the two opposing contributions is that the vortices 
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FIGURE 8. The regions of closed trajectories for three values of r / w u :  (u)  0.5, (b) 2, (c) 5. 

describe closed trajectories as drawn in figure 7(6). The Foppl equilibrium positions 
(for this r / w a )  are situated in the centres of the closed trajectories. 

The trajectories to the left are clockwise, while the trajectories to the right are 
counter-clockwise. It is noted that the vortex sign and the sense of the orbiting motion 
are the same: they are co-rotating. By reversing the signs of both M’ and r, the direction 
of the trajectories will be reversed. 

To give somc insight into the trapped regions, the trajectories tending to border the 
trapped regions and one inner trajectory are drawn for three values of r / w a  in figure 
8. The boundary trajectories go through the equilibrium on the horizontal axis (10). Of 
course the trajectories can be mirrored in the horizontal axis. Calculating the 
equilibrium positions on the horizontal axis from (lo), one finds respectively 
Y, = xo = 1.020, r ,  = x, = 1.089, ru = xu = 1.261. As we can see in the figure this 
equilibrium is obviously a saddle point. 

One should remember that for the flow field of the symmetric free vortex pair above 
a cylinder in an upward uniform flow, closed trajectories can only be obtained when 
the flow field is symmetric. Non-symmetric disturbances are not allowed, which is 
shown later in this section. Symmetry can physically be enforced by putting a splitter 
plate on the vertical axis. 

3 . 3 .  Nnn-symmetric case 
As stated in Lamb (1932) Foppl was aware that the equilibrium is unstable for 
antisymmetric disturbances. This is verified by computations of the trajectories using 
a non-symmetrical formulation. The vortices are given small non-symmetric 
displacements from the equilibrium positions and an example of the resulting 
trajectories is plotted in figure 9. 

It appears that because of the non-symmetrically disturbed equilibrium, one vortex 
is soon convected away with the free flow, and as a result the other one of course 
follows. The two vortices need each other (in symmetric position) to maintain the 
equilibrium. A small non-symmetric distortion will cause them to be successively 
convected with the free flow, away from the body, and away from the stagnation point. 
A similar situation arises for vortices which are not quite equally strong but initially 
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FIGURE 9. Vortex trajectory after a small asymmetric position-disturbance from 
equilibrium, for r = 2, w = 1 (with At = 0.1). 

symmetrically diposed. At large distances from the cylinder however, such vortex 
pairs describe cycloi'dal trajectories. 

4. Vortex trajectories near a wing-body combination 

applying two Joukowski transformations to the flow field round a circle (figure 10). 
The Joukowski transformations are 

The flow field near a simple wing-body combination can be found by successively 

c = ( + a 2 / (  and c = z+c2/z. 

g = f(z + c2 /z  + [(z + c ~ / z ) ~  - 4 ~ ~ 1 ~ ' ~ ) .  
Eliminating : 

The flow field in the (-plane is given by 

With the positions of the vortices in the [-plane we now calculate the velocities in the 
z-plane using the transformation 

where z1 is the position of vortex 1 in the z-plane. The vortex velocity is calculated by 
substitution of the vortex coordinates in the velocity equation, while discarding the 
infinite self-induced term. The vortex position is to be substituted in the velocity 
equation (16) with (15) for x. But now we cannot simply discard the infinite self- 
induced part, because in combination with the transformation we find near the vortex 
position in the z-plane, using Taylor expansions: 
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FIGURE 10. Transformation of the flow field round a circle to the flow field of a wing-body 

combination with span b = 2 (a + (a2 - c~)~"). 

where 6 is a small displacement. For the vortex velocity in the z-plane one finds 

with 

This equation was first derived by Lin (1941). 
Again the Runge-Kutta integration method is used to calculate the vortex 

trajectories with the expression for the vortex velocity, which is obtained by 
substituting (15) and the derivatives of transformation (14) in (17). 

4.1. Symmetric trajectories 

In figure 11, five trajectories are drawn for a symmetric vortex pair near a wing-body 
combination in an upward flow (see figure 10, z-plane, with -4 = & = 0 for 
T / w  = 2, c = 1 and a = 2. The trajectories are drawn by choosing five different initial 
positions and plotting the resulting trajectories in one figure. The trajectories are 
symmetric about the vertical axis because the initial vortex positions are so chosen. As 
in §$2 and 3 the trajectories on the left are clockwise, while the trajectories on the right 
are counter-clockwise. The vortices move in the same direction; they are co-rotating. 

From figure 11 one can see that for this case there arc equilibrium positions near the 
stagnation point at the top, but also near the stagnation points at the intersection of 
wing and body. These equilibrium points are in the centres of the small closed 
trajectories. It is further noted that there are also equilibrium points on the positions 
where the trajectories around the two centres (in one quadrant) merge. In figure 11 
these equilibrium points are situated where the upward part of the smallest trajectory 
drawn around two centres closely approaches the downward part. The equilibrium 
situated there is a saddle point. When a vortex pair is symmetrically disturbed from this 
equilibrium it will, depending on the direction of the distortion, either start to move 
around one of the two centre-like equilibria or it will follow a trajectory around both 
centres. 
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FIGURE 11. Symmetric vortex trajectories for r / w  = 2, c = 1 and a = 2 .  

4.2. Approximation of the frequency and equilibrium position in the corner 
The flow field due to the upward flow (w) in the z-plane of figure 10 is described by 

We make a local approximation of the stagnation flow field in the corner at the 
junction of wing and body by substituting: 

z = c+s  with Is1 4 c, 

which yields to leading order 

This has again the form of a stagnation-point flow field as defined in 92 but now with 

2w 
k =  

(a2 - c2) l i2  

With the relation between a, c and the span b = 2[a+(a2-~2)1 ’2 ]  (figure lo), k is 
expressed in terms of the body radius c and span b:  

8bw k = -  
b2 - 4c2 

The angular velocity follows by substituting this k into (5): 

16bw o = 2 k = -  
b2 - 42 . 
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FIGURE 12. Equilibrium positions and the corresponding frequencies (a = 2 and c = l), 
for w = 10. 

The equilibrium position is obtained by substituting (20) in (2) 
112 

x, = (L) ljZ = -(-(b2-4c2)) I r , 
4xw 8 xbw 

and yo = xo. 
This approximation for the equilibrium position applies for lx,l 4 c. For an aircraft 

with a circular body with radius c and wingspan b (figure 10) in an upward flow 
w = Usina (figure 1) we now have, for a certain T / w ,  an approximation for the 
equilibrium position of a vortex (0 in the corner flow field. The angular velocity for 
this equilibrium is approximated by (20). 

In the same way for the equilibrium on the top of the body one finds k = 2w/a. Thus 
we have 

w 16bw w=4-=-  
a bZ + 4c2 

x, being measured from the upper stagnation point. 

4.3. The equilibrium positions and their frequencies 

To plot the equilibrium positions and the corresponding frequencies the earlier 
described computer program for plotting the trajectories was used. The equilibrium 
positions were calculated numerically for a certain T / w .  Then the vortex was placed 
near the equilibrium position (about 0.001 away); the closed trajectory that resulted 
was used to calculate the time period by multiplying the number of time steps by the 
magnitude of the time step. The results are shown in figure 12. It is emphasized that 
the equilibrium positions are determined by T / w ,  but that the magnitude of the 
frequency at an equilibrium position depends on the magnitude of w only. Furthermore 
figure 12 is plotted for flow fields symmetric about the vertical axis. The limit 
frequencies at the stagnation points of the corner (20) and on the top (22) are plotted 
as well. The lower equilibrium position disappears when r / w  is greater than 4.4997. 
The saddle-like equilibrium and the lower neutral equilibrium then merge. A trajectory 
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FIGURE 13. Vortex trajectory near the lower equilibrium for r / w  = 4.4. 
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FIGURE 14. Non-symmetric vortex trajectories in the corners of a wing-body combination. 

near the lower equilibrium position is plotted in figure 13 for r / w  = 4.4 to illustrate 
this merging. 

4.4. Non-symmetric case 
For the equilibrium positions at the top of the configuration the same considerations 
as described for the equilibrium near the circular cylinder ($3) apply. The vortices in 
the corners, however, are not necessarily blown away as they are above a cylinder. The 
vortices in the corners do not need another free vortex in the neighbourhood that 
moves symmetrically. The ‘capturing action’ is in fact accomplished by the mirror 
vortices which we force to move to fulfil the boundary conditions at the contour. A 
small disturbance away from the equilibrium position will cause a vortex to start 
moving around its equilibrium position, while on the other side of the body the vortex 
may stay close to its equilibrium position and move around it with a different 
amplitude, only slightly influenced by the vortex at the other side of the body. How 
much influence there is depends on the amount of shielding that is accomplished by the 
body. The interesting point is that a single vortex can be captured in a corner. 
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FIGURE 15. (a) Vortex trajectories with the right-hand vortex leaving the contour. 
(b) Trajectory of the left-hand vortex of (a). 

An example of two different almost periodic trajectories on either side of the body 
is given in figure 14. In this case we have a non-stationary flow field with two slightly 
different frequencies, which causes beating in the total resulting force and moment on 
the contour. 

In figure 15(a) an example is given when the disturbance given to the right-hand 
vortex is large enough to cause it to be convected away. But the left-hand vortex stays 
in its orbit round its equilibrium position. The influence of the moving right-hand 
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vortex on the trajectory of the left-hand vortex is clearly seen in figure 15(b). Initially 
there is a quasi-periodic motion of the left-hand vortex. Ultimately the flow will tend 
to a periodic situation with a definite vortex trajectory. 

5. Concluding remarks 
For a vortex in a rectangular corner stagnation flow field equilibrium positions are 

found, where the vortex velocity equals zero for a certain value of T / k .  Expressions are 
derived for these equilibrium positions. 

When a vortex in a rectangular corner flow field is given a small disturbance from 
its equilibrium position, it is found to describe a trajectory around this equilibrium 
position. This means that a single vortex in a corner stagnation flow field can perform 
a closed trajectory (rotation) all by itself. This is important because when oscillating 
forces caused by vortices are present, the explanation is often sought in a system of co- 
rotating vortices (e.g. Ericsson 1987 and Hall et al. 1990), while in this study it is shown 
that there are equilibrium positions for a vortex in a corner flow field around which the 
vortex can rotate at a definite frequency on its own. 

The periods of the resulting trajectories tend to a definite minimum value when the 
radius tends to zero. The limit frequencies are derived as a function of the equiIibrium 
position and the magnitude of the flow field (k or w) for a vortex in a rectangular 
corner, as well as for the equilibrium position of a vortex pair symmetrically placed in 
the stagnation flow field above a circular cylinder in an upward uniform flow. 

The equilibrium of a vortex pair above a circular cylinder in an upward uniform flow 
is found to be unstable for non-symmetrical disturbances (as already noted by Foppl). 
This turned out also to be the case for the equilibrium at the top of a wing-body 
combination. This means that the vortices are carried away with the fluid when a non- 
symmetrical disturbance occurs. To enforce symmetry, a splitter plate can be placed in 
the plane of symmetry. Such a splitter plate would (partly) prevent the vorticity being 
convected away with the upward flow due to non-symmetrical disturbances and thus 
in fact captures the vortex. In placing a splitter plate one should of course be aware of 
the possibility of introducing oscillating forces caused by rotating vortices as pointed 
out in this study. 

The equilibrium in the corner of the wing-body junction is found to be neutral. A 
small displacement from the equilibrium position causes a single vortex to perform a 
periodic motion (closed trajectory) around its equilibrium position. A second free 
vortex that symmetrically moves along is not needed to maintain the periodic motion, 
because the capturing action is accomplished by the ‘mirror vortices’ representing the 
boundaries of the corner. This neutral equilibrium is found to disappear for T/w 
greater than a certain value. For these values of T / w  only the equilibrium above the 
body exists. 

An approximation has been made of the stagnation-point flow fields in the corner 
of the wing-body junction and on the top of the body. The equilibrium position and 
frequency belonging to a certain configuration (with wingspace b and body radius c) 
with a known T / w  are easily approximated by the derived expressions. Farther away 
from the stagnation points the equilibrium positions and corresponding frequencies for 
a certain wing-body combination are calculated numerically. 

The present two-dimensional results were constructed in view of possible 
applications to flows around slender wing-body configurations at an angle of attack 
with vortices generated by strakes or at the front part of a fuselage. The initial 
conditions for the two-dimensional flows discussed in this paper can then be related to 
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the boundary conditions in the three-dimensional flow where the vortices are being 
generated. Assuming steady flow with respect to the aircraft leads to a steady cross- 
flow which can be related to the present unsteady solutions by using the simple 
approximate correspondence 

where U is the uniform velocity of the aircraft in the axial direction with respect to the 
air at rest (figure 1) and x is the coordinate in the axial direction moving with the 
aircraft. The orbits of the vortex lines would thus lead to steady helical vortices with, 
of course, a finite radius of curvature and infinite velocity induced on themselves in the 
direction of the binormal. One might say that in such an application the vortices would 
immediately break down. Replacing the line vortices by more realistic finite core 
distributions of vortex filaments leads to finite velocities which, however, may become 
quite large. It is not quite a straightforward matter to combine such velocities with the 
velocities obtained in the cross-flows discussed in this paper. Obviously relation (23) 
would need modification since the axial convection speed of the vortex cores cannot be 
approximated by the uniform velocity component U and would be dependent on the 
structure of the inner core and the assumed initial values. 

If the three-dimensional vortex-lines are considered to be already present, the 
velocity of a point vortex in the cross-flow is to be interpreted as the lateral velocity of 
an infinite straight vortex line in the three-dimensional flow. There would then be 
oscillating forces on the contour as a result of the changing momentum in the flow field 
and the resulting changing pressure on the surface. 
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